Decellularized Wharton’s Jelly from human umbilical cord as a novel 3D scaffolding material for tissue engineering applications
نویسندگان
چکیده
In tissue engineering, an ideal scaffold attracts and supports cells thus providing them with the necessary mechanical support and architecture as they reconstruct new tissue in vitro and in vivo. This manuscript details a novel matrix derived from decellularized Wharton's jelly (WJ) obtained from human umbilical cord for use as a scaffold for tissue engineering application. This decellularized Wharton's jelly matrix (DWJM) contained 0.66 ± 0.12 μg/mg sulfated glycosaminoglycans (GAGs), and was abundant in hyaluronic acid, and completely devoid of cells. Mass spectroscopy revealed the presence of collagen types II, VI and XII, fibronectin-I, and lumican I. When seeded onto DWJM, WJ mesenchymal stem cells (WJMSCs), successfully attached to, and penetrated the porous matrix resulting in a slower rate of cell proliferation. Gene expression analysis of WJ and bone marrow (BM) MSCs cultured on DWJM demonstrated decreased expression of proliferation genes with no clear pattern of differentiation. When this matrix was implanted into a murine calvarial defect model with, green fluorescent protein (GFP) labeled osteocytes, the osteocytes were observed to migrate into the matrix as early as 24 hours. They were also identified in the matrix up to 14 days after transplantation. Together with these findings, we conclude that DWJM can be used as a 3D porous, bioactive and biocompatible scaffold for tissue engineering and regenerative medicine applications.
منابع مشابه
Correction: Decellularized Wharton's Jelly from human umbilical cord as a novel 3D scaffolding material for tissue engineering applications
[This corrects the article DOI: 10.1371/journal.pone.0172098.].
متن کاملWharton’s Jelly Mesenchymal Stem Cell: Various Protocols for Isolation and Differentiation of Hepatocyte-Like Cells; Narrative Review
There are several differentiation methods for mesenchymal stem cells (MSCs) into hepatocyte-like cell. Investigators reported various hepatic differentiation protocols such as modifying culturing conditions or using various growth factors/cytokines. In this literature review, we compared different MSCs extraction and isolation protocols from Wharton’s jelly (WJ) and explored various MSCs differ...
متن کاملWharton’s jelly absence: a possible cause of stillbirth
The umbilical cord is a structure that provides vascular flow between the fetus and the placenta. It contains two arteries and one vein, which are surrounded and supported by gelatinous tissue known as Wharton’s jelly. There are many umbilical cord abnormalities that are related to the prognosis of fetus survival and birth weight. The authors report a case of umbilical cord constriction due to ...
متن کاملMesenchymal Stem Cells Derived from Wharton’s Jelly and their Potential for Cardio-Vascular Tissue Engineering
Experimental results accumulated during last decade suggest that human perinatal tissues such as placenta, fetal membranes, and umbilical cord, as well as perinatal fluids such as, amniotic fluid and umbilical cord blood, harbour different amounts of multipotent precursor cells, called extra-embryonic mesenchymal stem cells (EE-MSCs). Perinatal EE-MSCs represent an intermediate cell type betwee...
متن کاملUmbilical Cord Lining Membrane and Wharton’s Jelly-Derived Mesenchymal Stem Cells: the Similarities and Differences
The umbilical cord tissue has gained attention in recent years as a source of multipotent cells. Due to its widespread availability, the umbilical cord may be an excellent alternative source of cells for regenerative medicine. Anatomically, umbilical cord tissue is constituted of several different parts, and, accordingly, immunostaining of cord tissue sections revealed differential distribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017